

エラー訂正コード (ECC) 付 16M ビット (1M ワード × 16 ビット) スタティック

特長

- 高速
 - \Box t_{AA} = 10ns \angle 15ns
- シングル ビット エラー訂正用の組込みエラー訂正コード (ECC)
- 少ないアクティブおよびスタンバイ消費電流
 - □ I_{CC} = 90mA (100MHz での Typ)
 - \Box I_{SB2} = 20mA (Typ)
- 動作電圧範囲: 1.65V ~ 2.2V、2.2V ~ 3.6V、4.5V ~ 5.5V
- 1.0V データ保持
- トランジスタ トランジスタ ロジック (TTL) と互換性のある 入出力
- ■1ビット エラー検出と訂正を示すエラー表示 (ERR) ピン
- 鉛フリー 48 ピン TSOP I、54 ピン TSOP II および 48 ボール VFBGA パッケージで実装

機能の説明

CY7C1061G および CY7C1061GE は組込み $ECC^{[1]}$ を備えた高性能 CMOS 高速スタティック RAM デバイスです。両方のデバイスは、シングルおよびデュアル チップ イネーブルのオプションと複数のピン配置で提供されます。 CY7C1061GE デバイスは、読み出しサイクル中にシングル ビット エラー検出と訂正イベントを通知する ERR ピンを備えています。

シングル チッ<u>プ</u>イネーブル入力を持つデバイスは、チップ イネーブル入力 (CE) を LOW にアサートすることでアクセスします。デュアル チップ イネーブル デバイスは、両方のチップ イネーブル入力を (CE $_1$ を LOW に、CE $_2$ を HIGH に) アサートしてアクセスします。

データ書き込みは、書き込みイネーブル (WE) 入力を LOW にアサートし、データとアドレスをデバイスのそれぞれデータ ピン ($I/O_0 \sim I/O_{15}$) とアドレス ピン ($A_0 \sim A_{19}$) に提供して実行します。上位バイト イネーブル (BHE) と下位バイト イネーブル (BLE) 入力はバイト書き込みを制御し、対応する I/O_0 ライン上のデータを指定されたメモリ位置に書き込みます。BHE は、 $I/O_0 \sim I/O_7$ を制御します。

データ読み出しは、出力イネーブル (\overline{OE}) 入力をアサートし、アドレス ライン上に必要なアドレスを提供して実行します。 読み出しデータは、I/O ライン (I/O0 ~ I/O15) 上でアクセスできます。 バイト アクセスは、必要なバイト イネーブル信号 (\overline{BHE} または \overline{BLE}) をアサートし、指定されたアドレス位置からデータの上位バイトまたは下位バイトのいずれかを読み出すことで実行します。

全ての I/O ($I/O_0 \sim I/O_{15}$) は、デバイス<u>が選</u>択解除される (シングル チップ イネーブル デバ<u>イス</u>では CE HIGH、デュアル チップ イネーブ<u>ル</u> デバイスでは CE₁ HIGH \angle CE₂ LOW)、または制御信号 (OE、BLE、BHE) がアサート解除される時、高インピーダンス状態になります。

CY7C1061GE デバイスでは、アクセスされた位置におけるシングル ビット エラーの検出および訂正は、ERR 出力のアサート (ERR = HIGH) により行われます。読み出しと書き込みモードの詳細については、16 ページの真理値表 を参照してください。

論理ブロック図は2ページに示します。

CY7C1061G および CY7C1061GE デバイスは 48 ピン TSOP I、 54 ピン TSOP II および 48 ボール VFBGA パッケージで提供さ れます。

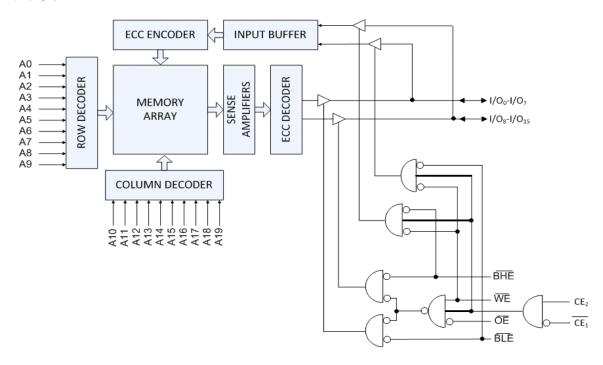
すべての関連資料の一覧については、ここをクリックしてください。

製品ポートフォリオ

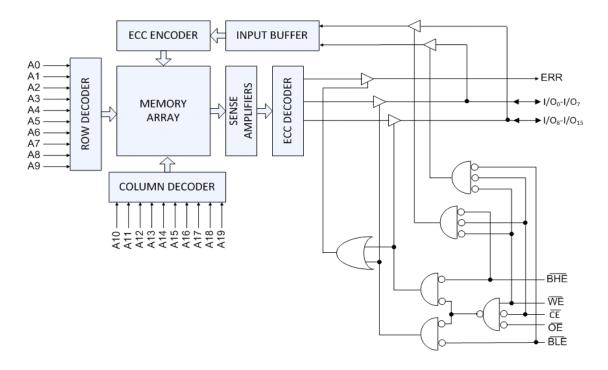
					消費電流			
製品	特長およびオプション	範囲	V _{CC} の範囲 (V)	速度 (ns)	動作時	I _{CC} (mA)	スタンパ (m	イ時 I _{SB2}
秋阳	(4ページのピン配置を ご参照ください)	早じ区口	(V)	10 / 15		f _{max}	•	A)
					Typ ^[2]	Max	Typ ^[2]	Max
CY7C1061G18	シングルまたはデュアル チップ イネーブル	産業用	1.65V ~ 2.2V	15	70	80	20	30
CY7C1061G(E)30			2.2V ~ 3.6V	10	90	110		
CY7C1061G	オプションの ERR ピン		4.5V ~ 5.5V	10	90	110		
	アドレス MSB A ₁₉ ピン配置 オプションはサイプレスと 他のベンダーと互換							

注:

1. このデバイスは、エラー検出時の自動再書き込みをサポートしません。


2. Typ 値は単に参考値であり、保証またはテストされていません。 Typ 値は、 V_{CC} = 1.8V (V_{CC} が 1.65V \sim 2.2V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 5V (V_{CC} が 4.5V \sim 5.5V の場合)、 V_{A} = 25°C で測定しています。

 Cypress Semiconductor Corporation
 • 198 Champion Court
 • San Jose, CA 95134-1709
 • 408-943-2600


 文書番号: 001-92125 Rev. *B
 改訂日 2017 年 4 月 20 日

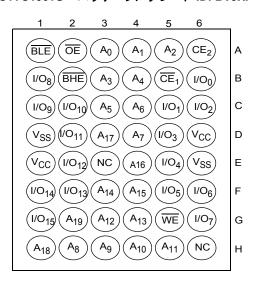
論理ブロック図 - CY7C1061G

論理ブロック図ー CY7C1061GE

文書番号: 001-92125 Rev. *B

目次

ピン配置	4
最大定格	7
動作範囲	
 DC 電気的特性	
静電容量	
 熱抵抗	
 AC テストの負荷と波形	
データ保持特性	
データ保持波形	
AC スイッチング特性	
スイッチング波形	
真理值表	
FRR 出力 – CY7C1061GF	


注文情報	17
注文コードの定義	19
パッケージ図	20
略語	23
本書の表記法	23
測定単位	23
改訂履歴	24
セールス、ソリューション、および法律情報	25
ワールドワイド販売と設計サポート	25
製品	25
PSoC® ソリューション	
サイプレス開発者コミュニティ	25
テクニカル サポート	25

ピン配置

図 1. 48 ボール VFBGA (6 × 8 × 1.0mm) ピン配置、ERR なしの デュアル チップ イネーブル、アドレス MSB A19 はボール G2 に位置、CY7C1061G $^{[3]}$ パッケージ/グレード ID: BVJXI

図 2. 48 ボール VFBGA (6 × 8 × 1.0mm) ピン配置、ERR なしの デュアル チップ イネーブル、アドレス MSB A19 はボール H6 に位置、CY7C1061G^[3] パッケージ/グレード ID: BVXI

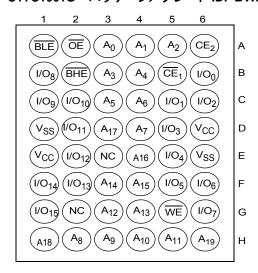
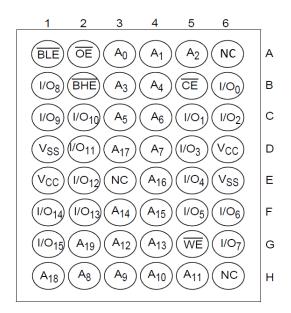
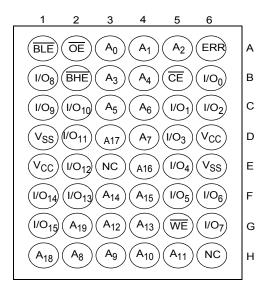



図 3. 48 ボール VFBGA (6 × 8 × 1.0mm) ピン配置、ERR なしのシングル チップ イネーブル、アドレス MSB A19 はボール G2 に 位置、CY7C1061G^[3] パッケージ/グレード ID: BV1XI

注:


^{3.} NC ピンはパッケージ内のダイには接続されていません。

ピン配置(続き)

図 4. 48 ボール VFBGA (6 × 8 × 1.0mm) ピン配置、ERR 付き のシングル チップ イネーブル、アドレス MSB A19 はボール G2 に位置、CY7C1061GE^[4、5] パッケージ/グレード ID: BV1XI

図 5. 48 ボール VFBGA (6 × 8 × 1.0mm) ピン配置、ERR 付きの デュアル チップ イネーブル、アドレス MSB A19 はボール G2 に位置、CY7C1061GE $^{[4,5]}$ パッケージ/グレード ID: BVJXI

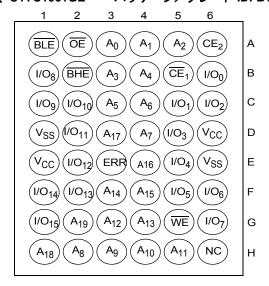
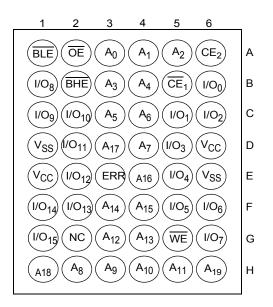



図 6. 48 ボール VFBGA (6 × 8 × 1.0mm) ピン配置、ERR 付きのデュアル チップ イネーブル、アドレス MSB A19 はボール H6 に 位置、CY7C1061GE^[4、5] パッケージ/グレード ID: BVXI

注:

^{4.} NC ピンはパッケージ内のダイには接続されていません。

^{5.} ERR は出力ピンです。このピンを使用しない場合、開放にしてください。

ピン配置(続き)

図 7. 48ピン TSOP I (12×18.4×1mm)ピン配置、 ERR 付きのシングル チップ イネーブル、CY7C1061 $GE^{[6, 7]}$ パッケージ/グレード ID: ZXI

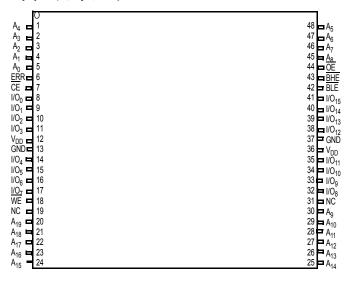


図 8. 48 ピン TSOP I (12 × 18.4 × 1mm) ピン配置、 ERR なしのシングル チップ イネーブル、CY7C1061G^[6] パッケージ/グレード ID: ZXI

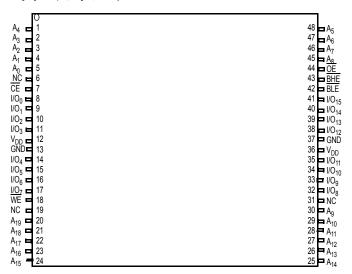


図 9. 54 ピン TSOP II (22.4 × 11.84 × 1.0mm) ピン配置、ERR なしのデュアル チップ イネーブル、CY7C1061 $G^{[6]}$ パッケージ/グレード ID: ZSXI

I/O ₁₂ V _{CC} I/O ₁₃ I/O ₁₄ V _{SS}	1 2 3 4 5	54 53 52 51 50		I/O ₁₁ V _{SS} I/O ₁₀ I/O ₉ V _{CC}
I/O ₁₅	6	49	П	I/O ₈
A_4	7	48	Þ	A ₅
A_3	8	47		A_6
A_2	9	46		A ₇
A_1	10	45		A ₈
A_0	11	44		A9
BHE	12	43		NC
CE ₁	13	42		OE
V_{CC}	14	41		V_{SS}
WE	15	40		NC
CE ₂	16	39		BLE
A ₁₉	17	38		A ₁₀
A18	18	37		A ₁₁
A ₁₇	19	36		A ₁₂
A ₁₆	20	35		A ₁₃
A ₁₅	21	34		A ₁₄
I/O_0	22	33		I/O ₇
V_{CC}	23	32		V_{SS}
I/O ₁	24	31		I/O ₆
I/O ₂	25	30	Þ	I/O ₅
V_{SS}	26	29		V_{CC}
I/O ₃	27	28		I/O ₄

図 10. 54 ピン TSOP II (22.4 × 11.84 × 1.0mm) ピン配置 ERR 付きのデュアル チップ イネーブル、CY7C1061 $GE^{[6, 7]}$ パッケージ/グレード ID: ZSXI

	1	54	Ь	I/O ₁₁
	2	53	Ы	V_{SS}
П	3	52	П	I/O ₁₀
Ē	4		Б	I/O ₉
П	5	50	F	V_{CC}
F	6	49	F	I/O ₈
F	7		F	A ₅
Ξ			F	A ₆
F	-		F	A ₇
Ξ	-		F	A ₈
Ξ			Ħ.	A9
H			F	ERR
Ξ			F	OE
F	-		F	V _{SS}
Ξ	15		F	NC
Ħ	16	39	F	BLE
a	17	38	Б	A ₁₀
a	18	37	Б	A ₁₁
	19	36	Б	A ₁₂
	20	35		A ₁₃
	21	34	Ы	A ₁₄
	22	33		I/O ₇
	23	32		V_{SS}
	24	31		I/O ₆
	25	30		I/O ₅
Ц	26	29	р	V_{CC}
	27	28	П	I/O ₄
		□ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 10 □ 11 □ 12 □ 13 □ 14 □ 15 □ 16 □ 17 □ 18 □ 19 □ 20 □ 21 □ 22 □ 22	□ 2 53 52 □ 4 51 □ 5 50 □ 6 49 □ 7 48 □ 8 47 □ 9 46 □ 11 44 □ 12 43 □ 13 42 □ 14 □ 15 40 □ 16 39 □ 17 38 □ 18 37 □ 19 36 □ 20 35 □ 21 34 □ 22 33 □ 24 □ 21 □ 25 30 □ 26 29	2 53 3 52 4 51 5 50 6 49 7 48 8 47 9 46 10 45 11 44 12 43 13 42 14 41 15 40 16 39 17 38 17 38 17 38 18 37 19 36 19 36 20 35 21 34 22 33 21 34 22 33 221 34 223 32 24 31 25 30 26 29

- 6. NC ピンはパッケージ内のダイには接続されていません。 7. ERR は出力ピンです。このピンを使用しない場合、開放にしてください。

最大定格

最大定格を超えると、デバイスの寿命が短くなる可能性があります。これらのユーザー ガイドラインはテストされていません。 保存温度-65°C ~ +150°C 通電時の周囲温度-55°C ~ +125°C

GND を基準とした V_{CC} の電源電圧-0.5V ~ V_{CC} + 0.5V

High Z 状態の出力に 印加される電圧 ^[8]-0.5V ~ V_{CC} + 0.5V

DC 入力電圧 ^[8]	-0.5V ~ V _{CC} + 0.5V
出力 (LOW) への電流	20mA
静電気放電電圧	
(MIL-STD-883、Method 3015)	>2001V
ラッチアップ電流	> 140mA

動作範囲

グレード	周囲温度	V _{CC}
産業用	–40°C ~ +85°C	1.65V ~ 2.2V, 2.2V ~ 3.6V, 4.5V ~ 5.5V

DC 電気的特性

動作範囲 -40°C ~ 85°C

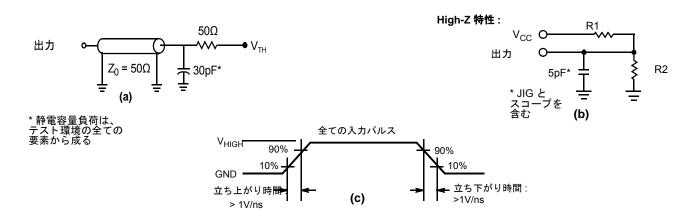
	説明				10ns / 15r		ns	N2 / I
パラメーター			テスト条件		Min	Typ ^[9]	Max	単位
V _{OH}	出力 HIGH	1.65V ~ 2.2V	$V_{CC} = Min$, $I_{OH} = -0.1mA$		1.4	_	_	V
	電圧	2.2V ~ 2.7V	$V_{CC} = Min$, $I_{OH} = -1.0mA$		2.0	-	-	
		2.7V ~ 3.0V	$V_{CC} = Min, I_{OH} = -4.0mA$		2.2	_	_	
		3.0V ~ 3.6V	$V_{CC} = Min$, $I_{OH} = -4.0 mA$		2.4	-	-	
		4.5V ~ 5.5V	$V_{CC} = Min$, $I_{OH} = -4.0 mA$		2.4	-	-	
		4.5V ~ 5.5V	$V_{CC} = Min$, $I_{OH} = -0.1 mA$		V _{CC} - 0.4 ^[10]	_	-	
V _{OL} 出力 LOV 電圧	出力 LOW	1.65V ~ 2.2V	$V_{CC} = Min$, $I_{OL} = 0.1mA$		-	_	0.2	V
	電圧	2.2V ~ 2.7V	V _{CC} = Min、I _{OL} = 2mA		-	_	0.4	
		2.7V ~ 3.6V	V _{CC} = Min、I _{OL} = 8mA	_	-	0.4		
		4.5V ~ 5.5V	V _{CC} = Min、I _{OL} = 8mA	_	_	0.4		
V _{IH} ^[8]	入力 HIGH 電圧	1.65V ~ 2.2V			1.4	_	V _{CC} + 0.2	V
		2.2V ~ 2.7V			2.0	_	V _{CC} + 0.3	
		2.7V ~ 3.6V			2.0	_	V _{CC} + 0.3	
		4.5V ~ 5.5V			2.0	_	V _{CC} + 0.5	
V _{IL} ^[8]	入力 LOW	1.65V ~ 2.2V			-0.2	_	0.4	V
	電圧	2.2V ~ 2.7V			-0.3	_	0.6	
		2.7V ~ 3.6V			-0.3	_	0.8	
		4.5V ~ 5.5V			-0.5	_	0.8	
I _{IX}	入力リーク記		$GND \le V_{IN} \le V_{CC}$		-1.0	_	+1.0	μA
I _{OZ}	出カリーク記		GND ≤ V _{OUT} ≤ V _{CC} 、出力が	が無効	-1.0	_	+1.0	μA
I _{CC}	動作時電源電	 配流	V _{CC} = Max、I _{OUT} = 0mA、 CMOS レベル	f = 100MHz	_	90.0	110.0	mA
			CMOS レベル	f = 66.7MHz	_	70.0	80.0	
I _{SB1}	自動 CE パワ – TTL 入力	アーダウン電流	$Max\ V_{CC}$ 、 $\overline{CE} \ge V_{IH}^{[11]}$ 、 $V_{IN} \ge V_{IH}$ または $V_{IN} \le V_{IL}$ 、	f = f _{MAX}	_	_	40.0	mA
I _{SB2}			$\begin{array}{c c} \hline \text{Max V}_{\text{CC}} & \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2 \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{V} \text{ \sharp} \text{ \sharp} \text{ ι} \text{ ι} \text{ V_{II}} \end{array}$		_	20.0	30.0	mA

^{8. 20}ns 未満のパルス幅の場合、 $V_{IL(min)}$ = -2.0V、 $V_{IH(max)}$ = V_{CC} + 2V。

^{9.} Typ 値は単に参考値であり、保証またはテストされていません。Typ 値は、 V_{CC} = 1.8V (V_{CC} が 1.65V \sim 2.2V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 2.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合)、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合) 、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合) 、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V の場合) 、 V_{CC} = 3V (V_{CC} が 3.2V \sim 3.6V \sim 3.6V \sim 3.6V \sim 3.2V \sim 3.6V \sim 3.6V \sim 3.6V \sim 3.2V \sim 3.6V V_{CC} = 5V (V_{CC} が 4.5V ~ 5.5V の場合)、 T_A = 25°C で測定しています。

^{10.} このパラメーターは設計保証であり、テスト<u>は行われ</u>ていません。 11. 全てのデュアル イネーブル デバイス<u>で</u>は、CE は CE₁ と CE₂ の論理的結合です。CE₁ が LOW であり、CE₂ が HIGH である時、CE は LOW ; CE₁ が HIGH であ る、または CE₂ が LOW である時、CE は HIGH です。

静電容量


パラ ギューター	説明	テスト条件	54ピンTSOPII	48- ボール VFBGA	48 ピン TSOP I	単位
C _{IN}	入力容量	$T_A = 25^{\circ}C$, $f = 1MHz$, $V_{CC} = V_{CC(typ)}$	10	10	10	pF
C _{OUT}	I/O 容量		10	10	10	pF

熱抵抗

パラ <u>メ</u> ーター	説明	テスト条件	54 ピン TSOP II	48- ボール VFBGA	48 ピン TSOP I	単位
		無風状態、3 × 4.5 インチの 4 層 プリント回路基板にはんだ付け	93.63	31.50	57.99	°C/W
	熱抵抗 (接合部とケース間)		21.58	15.75	13.42	°C/W

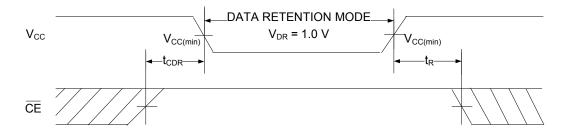
AC テストの負荷と波形

図 11. AC テストの負荷と波形 [13]

パラメーター	1.8V	3.0V	5.0V	単位
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V_{TH}	0.9	1.5	1.5	V
V _{HIGH}	1.8	3	3	V

文書番号: 001-92125 Rev. *B

^{12.} 開発時、およびこれらのパラメーターに影響を与える可能性がある設計/プロセス変更があった後にテストされます。 13. 完全なデバイスの AC 動作では、0V から V_{CC}(min) までのランブ時間が 100μs、V_{CC} がその動作電圧で安定した後の待ち時間が 100μs であることを前提としています。


データ保持特性

動作範囲 -40°C ~ 85°C

パラメーター	説明	条件	Min	Max	単位
V_{DR}	データ保持用の V _{CC}		1.0	ı	٧
I _{CCDR}	データ保持電流	$V_{CC} = V_{DR}, CE \ge V_{CC} - 0.2V^{[14]}, V_{IN} \ge V_{CC} - 0.2V$ \$\text{ \$t\$ it \$V_{IN} \le 0.2V}		30.0	mA
t _{CDR} ^[15]	チップ選択解除からデータ保持 までの時間		0	-	ns
t _R ^[15、16]	動作回復時間	V _{CC} ≥ 2.2V	10.0	ı	ns
		V _{CC} < 2.2V	15.0	-	ns

データ保持波形

図 12. データ保持波形 [14]

^{...} 14. 全てのデュアル イネーブル デバイスでは、 $\overline{\text{CE}}$ は $\overline{\text{CE}}_1$ と $\overline{\text{CE}}_2$ の論理的結合です。 $\overline{\text{CE}}_1$ が LOW であり、 $\overline{\text{CE}}_2$ が HIGH である時、 $\overline{\text{CE}}$ は LOW: $\overline{\text{CE}}_1$ が HIGH である、または $\overline{\text{CE}}_2$ が LOW である時、 $\overline{\text{CE}}$ は HIGH です。

^{15.} このパラメーターは設計保証であり、テストは行われていません。 16. 完全なデバイス動作には、 V_{DR} から V_{CC} (min) までの V_{CC} 直線ランプ時間が 100 μ s、または V_{CC} (min) で安定する時間が 100 μ s 必要です。

AC スイッチング特性

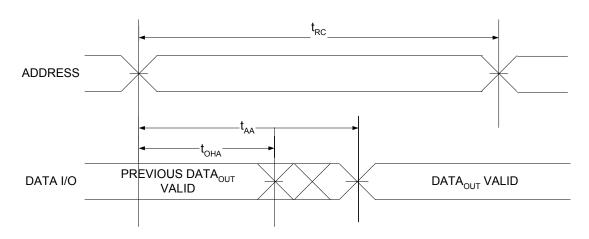
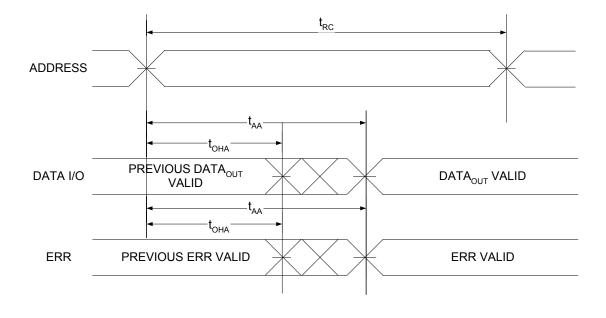
動作範囲が -40°C ~ 85°C

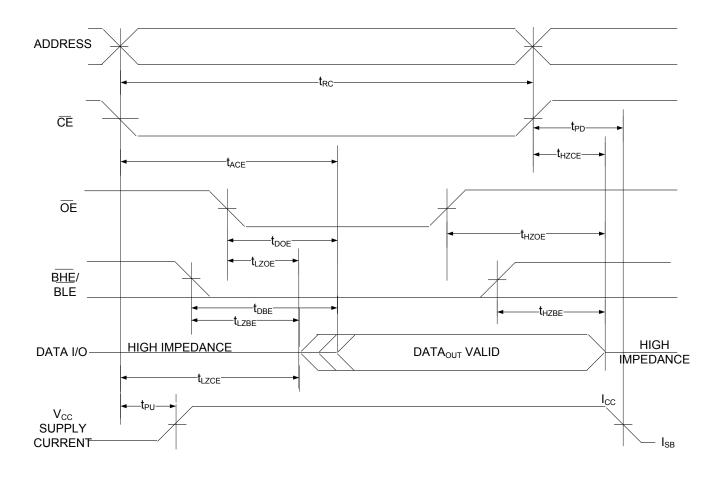
パラ イイデター	=v	10	ns	15ns		
[17]	説明	Min	Max	Min	Max	単位
読み出しサイ	クル	•	•	•	•	•
t _{POWER}	V _{CC} (安定) から最初のアクセスまでの時間 ^[18、19]	100.0	_	100.0	_	μs
t _{RC}	読み出しサイクル時間	10.0	_	15.0	-	ns
t _{AA}	アドレスからデータ/ ERR 有効までの時間	_	10.0	_	15.0	ns
t _{OHA}	アドレス変更からのデータ/ ERR ホールド時間	3.0	_	3.0	-	ns
t _{ACE}	CE LOW からデータ/ ERR 有効までの時間 ^[20]	-	10.0	-	15.0	ns
t _{DOE}	OE LOW からデータ/ ERR 有効までの時間	-	5.0	-	8.0	ns
t _{LZOE}	OE LOW から Low Z までの時間 ^[21、22、23]	0	_	1.0	-	ns
t _{HZOE}	OE HIGH から High Z までの時間 ^[21、22、23]	-	5.0	-	8.0	ns
t _{LZCE}	CE LOW から Low Z までの時間 ^[20、21、22、23]	3.0	_	3.0	-	ns
t _{HZCE}	CE HIGH から High Z までの時間 ^[20、21、22、23]	_	5.0	_	8.0	ns
t _{PU}	CE LOW から電源投入までの時間 ^[19、20]	0	-	0	-	ns
t _{PD}	<u>CE</u> HIGH から電源切断までの時間 ^[19、20]	_	10.0	-	15.0	ns
t _{DBE}	バイト イネーブルからデータ有効までの時間	_	5.0	-	8.0	ns
t _{LZBE}	バイト イネーブルから Low Z までの時間 ^[21、22]	0	_	1.0	_	ns
t _{HZBE}	バイト ディセーブルから High Z までの時間 ^[21、22]	_	6.0	_	8.0	ns
書き込みサイ	クル ^[24、25]					
t _{WC}	書き込みサイクル時間	10.0	_	15.0	_	ns
t _{SCE}	<u>CE</u> LOW から書き込み終了までの時間 ^[20]	7.0	-	12.0	-	ns
t _{AW}	アドレス セットアップから書き込み終了までの時間	7.0	_	12.0	-	ns
t _{HA}	書き込み終了からのアドレス ホールド時間	0	_	0	_	ns
t _{SA}	アドレス セットアップから書き込み開始までの時間	0	-	0	-	ns
t _{PWE}	WE パルス幅	7.0	_	12.0	-	ns
t _{SD}	データ セットアップから書き込み終了までの時間	5.0	_	8.0	_	ns
t _{HD}	書き込み終了からのデータ ホールド時間	0	_	0		ns
t _{LZWE}	WE HIGH から Low Z までの時間 ^[21、22、23]	3.0	_	3.0	_	ns
t _{HZWE}	WE LOW から High Z までの時間 ^[21、22、23]	_	5.0	_	8.0	ns
t _{BW}	バイト イネーブルから書き込み終了までの時間	7.0	_	12.0		ns

- 17. テスト条件は、信号遷移時間 (立ち上がり/ 立ち下がり) が 3ns 以下、タイミング参照レベルが 1.5V (V_{CC} ≥ 3V の場合) および V_{CC}/2 (V_{CC}< 3V の場合)、入力パ ルス レベルが 0V から 3V まで ($V_{CC} \ge 3V$ の場合) および 0V から V_{CC} まで ($V_{CC} < 3V$ の場合) であることを前提としています。読み出しサイクル用のテスト条件 は、特に記載がない限り、8ページの図 11の(a)に示した出力負荷を使用します。
- 18. t_{POWER} は、電源が V_{CC} で安定してから最初のメモリ アクセスが実行されるまでの最短時間を示します。
- 19. これらのパラメーターは設計保証であり、 $\underline{-Z}$ トは行われていません。 ____ 20. 全てのデュアル イネーブル デバイスでは、CE は CE $_1$ と CE $_2$ の論理的結合です。CE $_1$ が LOW であり、CE $_2$ が HIGH である時、CE は LOW;CE $_1$ が HIGH であ る、または CE₂ が LOW である時、CE は HIGH です。
- 21. t_{HZOE}、t_{HZCE}、t_{HZWE} および t_{HZBE} は、8 ページの図 11 の (b) に示した 5pF の負荷容量で指定されています。Hi-Z、Lo-Z 遷移は定常状態の電圧から ±200mV で測定されま
- 22. いかなる温度と電圧条件でも、いかなるデバイスでも、t_{HZCE} は t_{LZCE} より短く、t_{HZBE} は t_{LZBE} より短く、t_{HZOE} は t_{LZOE} より短く、t_{HZOE} は t_{LZWE} より短いです。
- 23. 開発時、およびこれらのパラメーターに影響を与える可能性がある設計/プロセス変更があった後にテストされます。
- 23. 射光時、あよいこれらのパンデーターに必要を与える可能に近める設計。フロセス変更があった後にナストされます。 24. メモリの内部書き込み時間は WE = $V_{\rm LL}$ 、CE = $V_{\rm LL}$ なるは、BHE または BLE = $V_{\rm LL}$ の条件が同時に発生する時に定義されます。これらの信号は、書き込みを開始するために LOW である必要があります。これらのいずれかが HIGH へ遷移すると書き込みが終了します。入力データのセットアップとホールドのタイミングは、書き込みを終了させる信号のエッジを基準にする必要があります。 25. 書き込みサイクル 2 (WE 制御、OE LOW) の最短書き込みパルス幅は、 $t_{\rm HZWE}$ と $t_{\rm SD}$ の和です。

スイッチング波形

図 13. CY7C1061G の読み出しサイクル 1 (アドレス遷移制御) [26、27]


図 14. CY7C1061GE の読み出しサイクル 2 (アドレス遷移制御) [26、27]

注: 26. <u>デバ</u>イスは連続的に選択されており、 $\overline{OE} = V_{|L}$ 、 $\overline{CE} = V_{|L}$ 、 \overline{BHE} または \overline{BLE} または両方共 $= V_{|L}$ 。 27. WE は読み出しサイクル中に HIGH です。

図 15. 読み込みサイクル 3 (OE 制御) [28、29、30]

^{28.}全てのデュアル イネーブル デバイスでは、CE は CE₁ と CE₂ の論理的結合です。CE₁ が LOW であり、CE₂ が HIGH である時、CE は LOW;CE₁ が HIGH である。 または CE₂ が LOW である時、CE は HIGH です。
29. WE は読み出しサイクル中に HIGH です。

^{30.} アドレスは、CEのLOW 遷移前、または遷移と同時に有効です。

図 16. 書き込みサイクル 1 (CE 制御) [31、32、33]

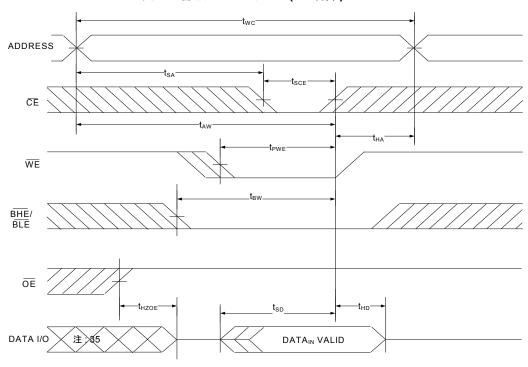
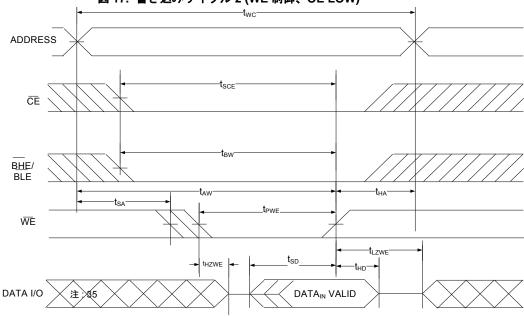
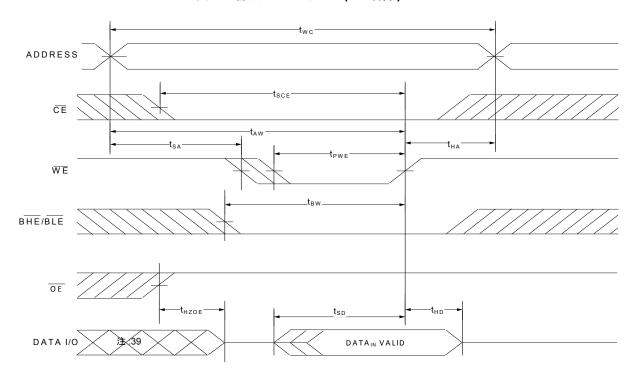



図 17. 書き込みサイクル 2 (WE 制御、OE LOW) [31、32、33、34]

注:


- 21:

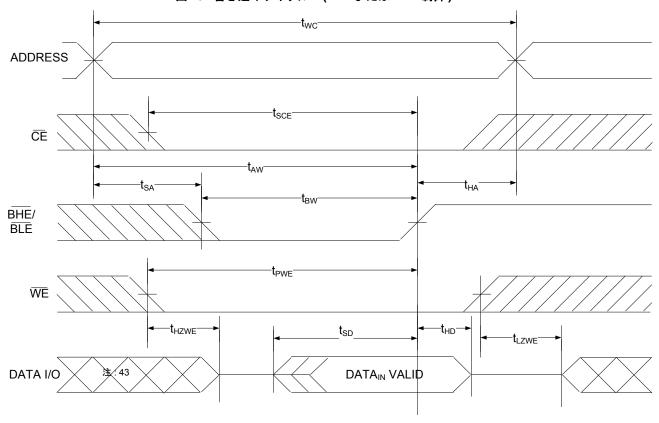
 31.全てのデュアル イネーブル デバイスでは、CE は CE₁ と CE₂ の論理的結合です。CE₁ が LOW であり、CE₂ が HIGH である時、CE は LOW ; CE₁ が HIGH である、または CE₅ が LOW である時、CE は LIGH です。

 32. メモリの内部書き込み時間は WE = V_{IL} 、CE = V_{IL} および BHE または BLE = V_{IL} の条件が同時に発生する時に定義されます。これらの信号は、書き込みを開始するために LOW である必要があります。これらのいずれかが HIGH へ遷移すると書き込みが終了します。入力データのセットアップとホールドのタイミングは、書き込みを終了させる信号のエッジを基準にする必要があります。
- 33. データ I/O は、 $CE=V_{IH}$ 、または $OE=V_{IH}$ または BHE および/または $BLE=V_{IH}$ の場合、高インピーダンス状態に入ります。 34. 最小の書き込みサイクルのパルス幅は t_{HZWE} と t_{SD} の和です。 35. この期間中、I/O は出力状態にあります。入力信号を適用しないでください。

図 18. 書き込みサイクル 3 (WE 制御) [36、37、38]

注:

36.全てのデュアル イネーブル デバイスでは、CE は CE₁ と CE₂ の論理的結合です。CE₁ が LOW であり、CE₂ が HIGH である時、CE は LOW : CE₁ が HIGH である。 または CE₂ が LOW である時、CE は HIGH です。


37. メモリの内部書き込み時間は WE = V_{IL}、CE = V_{IL} および BHE または BLE = V_{IL} の条件が同時に発生する時に定義されます。これらの信号は、書き込みを開始するために LOW である必要があります。これらのいずれかが HIGH へ遷移すると書き込みが終了します。入力データのセットアップとホールドのタイミングは、書き込みを終了させる信号のエッジを基準にする必要があります。

38. データ I/O は、CE = V_{IH}、または OE = V_{IH} または BHE および/または BLE = V_{IH} の場合、高インピーダンス状態に入ります。

39. この期間中、I/O は出力状態にあります。入力信号を適用しないでください。

図 19. 書き込みサイクル 4 (BLE または BHE 制御) [40、41、42]

___ 40.全てのデュアル イネーブル デバイスでは、 $\overline{\text{CE}}$ は $\overline{\text{CE}}_1$ と $\overline{\text{CE}}_2$ の論理的結合です。 $\overline{\text{CE}}_1$ が LOW であり、 $\overline{\text{CE}}_2$ が HIGH である時、 $\overline{\text{CE}}$ は LOW ; $\overline{\text{CE}}_1$ が HIGH であ る、または CE_2 が LOW である時、 \overline{CE} は HIGH です。

^{41.} メモリの内部書き込み時間は $\overline{WE} = V_{IL}$ 、 $\overline{CE} = V_{IL}$ および \overline{BHE} または $\overline{BLE} = V_{IL}$ の条件が同時に発生する時に定義されます。これらの信号は、書き込みを開始するために LOW である必要があります。これらのいずれかが HIGH へ遷移すると書き込みが終了します。入力データのセットアップとホールドのタイミングは、書き込みを終了させる信号のエッジを基準にする必要があります。 42. データ I/O は、 $\overline{CE} = V_{IH}$ 、または $\overline{OE} = V_{IH}$ または \overline{BHE} および I/\overline{BHE} まとは I/\overline{BHE} もと I/\overline{BHE} もいっぱっと I/\overline{BHE} は、 I/\overline{BHE} もいっぱっと I/\overline{BHE} ものっぱっと I/\overline{BHE} もいっぱっと I/\overline{BHE} ものっぱっと I/\overline{BHE} もいっぱっと I/\overline{BHE} ものっぱっと I/\overline{BHE} もいっぱっと $I/\overline{BHE$

^{43.}この期間中、I/O は出力状態にあります。入力信号を適用しないでください。

真理値表

CE [44]	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	モード	電源
Н	X ^[45]	X ^[45]	X ^[45]	X ^[45]	High-Z	High-Z	パワーダウン	スタンバイ (I _{SB})
L	L	Η	L	L	データ出力	データ出力	全ビット読み出し	アクティブ (I _{CC})
L	L	Ι	L	Η	データ出力	High-Z	下位ビットのみ読み出し	アクティブ (I _{CC})
L	L	Η	Ι	L	High-Z	データ出力	上位ビットのみ読み出し	アクティブ (I _{CC})
L	Х	L	L	L	データ入力	データ入力	全ビット書き込み	アクティブ (I _{CC})
L	Х	L	L	Η	データ入力	High-Z	下位ビットのみ書き込み	アクティブ (I _{CC})
L	Х	L	Ι	L	High-Z	データ入力	上位ビットのみ書き込み	アクティブ (I _{CC})
L	Н	Η	Х	X	High-Z	High-Z	デバイス選択、出力無効	アクティブ (I _{CC})
L	Х	Х	Н	Н	High-Z	High-Z	デバイス選択、出力無効	アクティブ (I _{CC})

ERR 出力 - CY7C1061GE

出力 ^[46]	モード
0	読み出し動作、保存データにはシングル ビット エラーなし
1	読み出し動作、シングル ビット エラーが検出され、訂正済み
High-Z	デバイス選択解除/出力無効/書き込み動作

文書番号: 001-92125 Rev. *B ページ 16 / 25

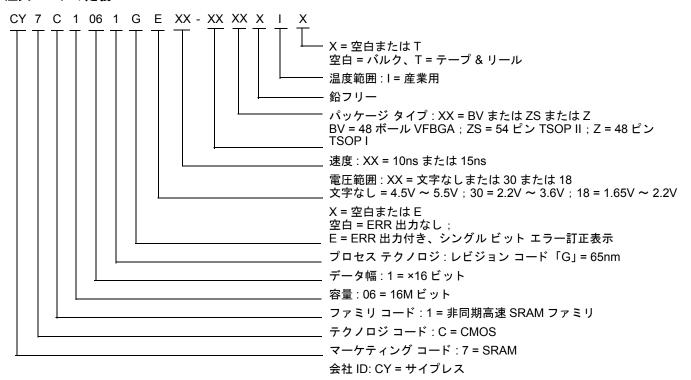
^{44.} 全てのデュアル イネーブル デバイ<u>スで</u>は、CE は CE₁ と CE₂ の論理的結合です。CE₁ が LOW であり、CE₂ が HIGH である時、CE は LOW; CE₁ が HIGH である、または CE₂ が LOW である時、CE は HIGH です。45. これらのピンの入力電圧レベルは V_{II} または V_{II} で なければなりません。

^{46.} ERR は出力ピンです。このピンを使用しない場合、開放にしてください。

注文情報

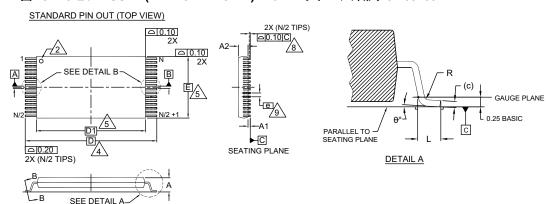
速度 (ns)	電圧範囲	注文コード	パッケー ジ図	パッケージ タイプ (全て鉛フリー)	主な特長/差別化	ERR ピン /ボール	動作範囲
10	10 4.5V ~ 5.5V	CY7C1061G-10BV1XI	51-85150	48 ボール VFBGA	シングル チップ イネーブル、	無	産業用
			CY7C1061GE-10BV1XI			アドレス MSB A19 はボール G2 に位置	有
		CY7C1061G-10BVJXI			デュアル チップ イネーブル	無	
		CY7C1061GE-10BVJXI			アドレス MSB A19 はボール G2 に位置	有	
		CY7C1061G-10BVXI			デュアル チップ イネーブル、	無]
		CY7C1061GE-10BVXI			アドレス MSB A19 はボール H6 に位置	有	
		CY7C1061G-10ZSXI	51-85160	54ピンTSOPII	デュアル チップ イネーブル	無	1
		CY7C1061GE-10ZSXI				有	1
		CY7C1061G-10ZXI	51-85183	48ピンTSOPI	シングル チップ イネーブル	無	
		CY7C1061GE-10ZXI				有]
	2.2V ~ 3.6V	CY7C1061G30-10BV1XI	51-85150	48 ボール VFBGA	シングル チップ イネーブル、	無]
		CY7C1061GE30-10BV1XI			アドレス MSB A19 はボール G2 に位置	有	-
		CY7C1061G30-10BVJXI			デュアル チップ イネーブル、	無	
		CY7C1061GE30-10BVJXI			アドレス MSB A19 はボール G2 に位置	有	
		CY7C1061G30-10BVXI			デュアル チップ イネーブル、 アドレス MSB A19 はボール H6 に位置	無	
		CY7C1061GE30-10BVXI				有	
		CY7C1061G30-10ZSXI	51-85160 51-85183	54ピンTSOPII	デュアル チップ イネーブル	無	1
		CY7C1061GE30-10ZSXI				有	
		CY7C1061G30-10ZXI		48ピンTSOPI	シングル チップ イネーブル	無	1
		CY7C1061GE30-10ZXI				有]
15	1.65V ~ 2.2V	CY7C1061GE18-15BV1XI	51-85150	48 ボール VFBGA	シングル チップ イネーブル、	有	
	Z.2V	CY7C1061G18-15BV1XI			アドレス MSB A19 はボール G2 に位置	無	
		CY7C1061GE18-15BVJXI			デュアル チップ イネーブル、	有	_
		CY7C1061G18-15BVJXI			アドレス MSB A19 はボール G2 に位置	無	
		CY7C1061GE18-15BVXI			デュアル チップ イネーブル、 アドレス MSB A19 はボール H6 に位置	有	
		CY7C1061G18-15BVXI				無	
		CY7C1061GE18-15ZSXI	51-85160	54ピンTSOPII		有	1
		CY7C1061G18-15ZSXI				無	
		CY7C1061GE18-15ZXI	51-85183	48ピンTSOPI	シングル チップ イネーブル	有]
		CY7C1061G18-15ZXI				無	

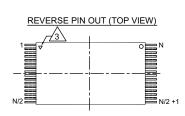
文書番号: 001-92125 Rev. *B ページ 17 / 25

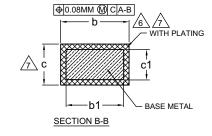

注文情報(続き)

速度 (ns)	電圧範囲	注文コード	パッケー ジ図	パッケージ タイプ (全て鉛フリー)	主な特長/差別化	ERR ピン /ボール	動作範囲
10	4.5V ~ 5.5V	CY7C1061G-10BV1XIT	51-85150	48 ボール VFBGA	シングル チップ イネーブル、	無	産業用
		CY7C1061GE-10BV1XIT			アドレス MSB A19 はボール G2 に位置、テープ & リール	有	
		CY7C1061G-10BVJXIT			デュアル チップ イネーブル、	無	
		CY7C1061GE-10BVJXIT			アドレス MSB A19 はボール G2 に位置、テープ & リール	有	
	·	CY7C1061G-10BVXIT			デュアル チップ イネーブル、	無	
	·	CY7C1061GE-10BVXIT			アドレス MSB A19 はボール H6 に位置、テープ & リール	有	
		CY7C1061G-10ZSXIT	51-85160 54ピンTSOP	54ピンTSOPII	デュアル チップ イネーブル、	無	
		CY7C1061GE-10ZSXIT			テープ & リール	有	•
		CY7C1061G-10ZXIT	51-85183	48ピンTSOPI	シングル チップ イネーブル、	無	
		CY7C1061GE-10ZXIT			テープ & リール	有	
	2.2V ~ 3.6V	CY7C1061G30-10BV1XIT	51-85150	48 ボール VFBGA	シングル チップ イネーブル、 アドレス MSB A19 はボール G2 に位置、テープ & リール	無	
		CY7C1061GE30-10BV1XIT				有	
		CY7C1061G30-10BVJXIT			デュアル チップ イネーブル、	無	
		CY7C1061GE30-10BVJXIT			アドレス MSB A19 はボール G2 に位置、テープ & リール	有	
		CY7C1061G30-10BVXIT			デュアル チップ イネーブル、 アドレス MSB A19 はボール H6 に位置、テープ & リール	無	
		CY7C1061GE30-10BVXIT				有	
		CY7C1061G30-10ZSXIT	51-85160		デュアル チップ イネーブル、 テープ & リール	無	
	·	CY7C1061GE30-10ZSXIT				有	
		CY7C1061G30-10ZXIT	51-85183		シングル チップ イネーブル、	無	1
	,	CY7C1061GE30-10ZXIT			テープ & リール	有	
15	1.65V ~	CY7C1061GE18-15BV1XIT	51-85150	48 ボール VFBGA	シングル チップ イネーブル、	有	
	2.2V	CY7C1061G18-15BV1XIT			アドレス MSB A19 はボール G2 に位置、テープ & リール	無	-
	·	CY7C1061GE18-15BVJXIT			デュアル チップ イネーブル、	有	
		CY7C1061G18-15BVJXIT			アドレス MSB A19 はボール G2 に位置、テープ & リール	無	
		CY7C1061GE18-15BVXIT			デュアル チップ イネーブル、	有	
		CY7C1061G18-15BVXIT			アドレス MSB A19 はボール H6 に位置、テープ & リール	無	
		CY7C1061GE18-15ZSXIT	51-85160	54ピンTSOP II	デュアル チップ イネーブル、	有	
		CY7C1061G18-15ZSXIT			テープ & リール	無	
		CY7C1061GE18-15ZXIT	51-85183	48ピンTSOPI	シングル チップ イネーブル、	有	-
	,	CY7C1061G18-15ZXIT	1		テープ&リール	無	

文書番号: 001-92125 Rev. *B ページ 18 / 25


注文コードの定義





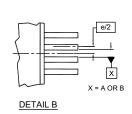

パッケージ図

図 20. 48 ピン TSOP I (12 × 18.4 × 1.0mm) Z48A パッケージ外形、51-85183

SYMBOL		DIMENSIONS				
STIVIBOL	MIN.	NOM.	MAX.			
Α	_	_	1.20			
A1	0.05	1	0.15			
A2	0.95	1.00	1.05			
b1	0.17	0.20	0.23			
b	0.17	0.22	0.27			
c1	0.10	-	0.16			
С	0.10	_	0.21			
D	20.00 BASIC					
D1	18.40 BASIC					
Е	12.00 BASIC					
е	0.	50 BAS	IC			
L	0.50	0.60	0.70			
θ	0°	_	8			
R	0.08	_	0.20			
N		48				

NOTES:

DIMENSIONS ARE IN MILLIMETERS (mm).

PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).

PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK. $\stackrel{\frown}{4}$ TO BE DETERMINED AT THE SEATING PLANE $\stackrel{\frown}{-C}$. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE

LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.

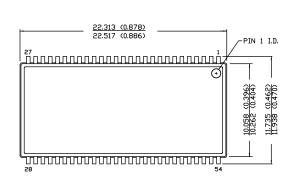
5. DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.

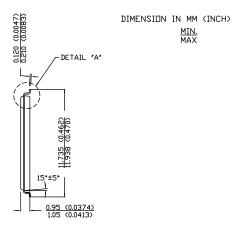
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm

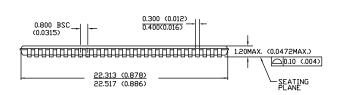
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

8 LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.

DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.


JEDEC SPECIFICATION NO. REF: MO-142(D)DD.


51-85183 *F



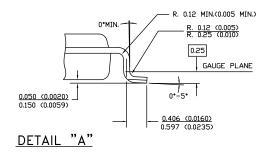
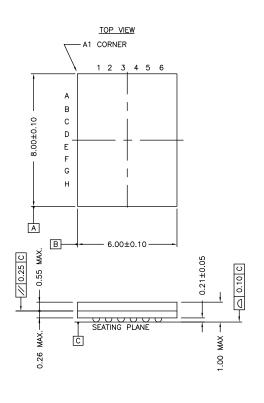
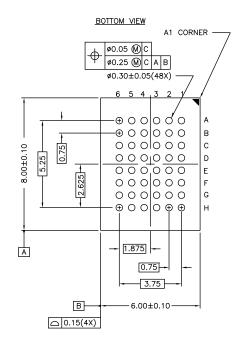

パッケージ図(続き)

図 21. 54 ピン TSOP II (22.4×11.84×1.0mm) Z54-II パッケージ外形、51-85160


51-85160 *E


文書番号: 001-92125 Rev. *B ページ 21 / 25

パッケージ図(続き)

図 22. 48 ボール VFBGA (6 × 8 × 1.0mm) BV48 / BZ48 パッケージ外形、51-85150

NOTE:
PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD)
posted on the Cypress web.

51-85150 *H

略語

略語	説明
BHE	Byte High Enable (上位バイト イネーブル)
BLE	Byte Low Enable (下位バイト イネーブル)
CE	Chip Enable (チップ イネーブル)
CMOS	Complementary Metal Oxide Semiconductor (相補型金属酸化膜半導体)
I/O	Input/Output (入力/出力)
OE	Output Enable (出力イネーブル)
SRAM	Static Random Access Memory (スタティック ランダム アクセス メモリ)
TSOP	Thin Small Outline Package (小型薄型パッケージ)
TTL	Transistor-Transistor Logic (トランジスタ - トランジスタ ロジック)
VFBGA	Very Fine-Pitch Ball Grid Array (超ファインピッチ ボール グリッド アレイ)
WE	Write Enable (書き込みイネーブル)

本書の表記法

測定単位

記号	測定単位
°C	摂氏温度
MHz	メガヘルツ
μΑ	マイクロアンペア
μs	マイクロ秒
mA	ミリアンペア
mm	ミリメートル
ns	ナノ秒
Ω	オーム
%	パーセント
pF	ピコファラッド
V	ボルト
W	ワット

改訂履歴

文書名 : CY7C1061G / CY7C1061GE、エラー訂正コード (ECC) 付 16M ビット (1M ワード×16 ビット) スタティック RAM 文書番号 : 001-92125					
版	ECN 番号	変更者	発行日	変更内容	
**	4345079	HZEN	04/14/2014	これは英語版 001-81540 Rev. *E を翻訳した日本語版 Rev. ** です。	
*A	4471870	HZEN	08/11/2014	これは英語版 001-81540 Rev. *J を翻訳した日本語版 Rev. *A です。	
*B	5693894	HZEN	04/19/2017	これは英語版 001-81540 Rev. *R を翻訳した日本語版 001-92125 Rev. *B です。	

文書番号: 001-92125 Rev. *B ページ 24 / 25

セールス、ソリューション、および法律情報

ワールドワイド販売と設計サポート

サイプレスは、事業所、ソリューション センター、メーカー代理店、および販売代理店の世界的なネットワークを保持しています。お客様の最寄りのオフィスについては、サイプレスのロケーション ページをご覧ください。

制品

ARM® Cortex® Microcontrollers cypress.com/arm 車載用 cypress.com/automotive クロック&バッファ cypress.com/clocks インターフェース cypress.com/interface IoT(モノのインターネット) cypress.com/iot メモリ cypress.com/memory マイクロコントローラー cypress.com/mcu **PSoC** cypress.com/psoc 電源管理 IC cypress.com/pmic タッチ センシング cypress.com/touch USB コントローラー cypress.com/usb ワイヤレス接続 cypress.com/wireless

PSoC® ソリューション

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

サイプレス開発者コミュニティ

フォーラム | WICED IOT Forums| projects | ビデオ | ブログ | トレーニング | components

テクニカル サポート

cypress.com/support

© Cypress Semiconductor Corporation, 2012-2017. 本書面は、Cypress Semiconductor Corporation 及び Spansion LLC を含むその子会社(以下「Cypress」という。)に帰属する財産である。本書面(本書面に含まれ又は言及されているあらゆるソフトウェア苦しくはファームウェア(以下「本ソフトウェア」という。)を含む)は、アメリカ合衆国及び世界のその他の国における知的財産法令及び条約に基づき Cypress が所有する。Cypress はこれらの法令及び条約に基づく全ての権利を留保し、本段落で特に記載されているものを除き、その特許権、著作権、商標権又はその他の知的財産権のライセンスを一切許諾しない。本ソフトウェアにライセンス契約書が伴っておらず、かつ Cypress との間で別途本ソフトウェアの使用方法を定める書面による合意がない場合、Cypress は、(1) 本ソフトウェアの著作権に基づき、(a) ソースコード形式で提供されている本ソフトウェアについて、Cypress ハードウェア製品と共に用いるためにのみ、かつ組織内部でのみ、本ソフトウェアの修正及び複製を行うこと、並びに(b) Cypress のハードウェア製品ユニットに用いるためにのみ、(直接又は再販売者及び販売代理店を介して間接のいずれかで) 本ソフトウェアをバイナリーコード形式で外部エンドユーザーに配布すること、並びに(2) 本ソフトウェア (Cypress により提供され、修正がなされていないもの) が抵触する Cypress の特許権のクレームに基づき、Cypress ハードウェア製品と共に用いるためにのみ、本ソフトウェアの作成、利用、配布及び輸入を行うことについての非独占的で譲渡不能な一身専属的ライセンス(サブライセンスの権利を除く)を付与する。本ソフトウェアのその他の使用、複製、修正、変換又はコンパイルを禁止する。

適用される法律により許される範囲内で、Cypress は、本書面又はいかなる本ソフトウェア若しくはこれに伴うハードウェアに関しても、明示又は黙示をとわず、いかなる保証(商品性及び特定の目的への適合性の黙示の保証を含むがこれらに関られない)も行わない。適用される法律により許される範囲内で、Cypress は、別途通知することなく、本書面を変更する権利を留保する。Cypress は、本書面に記載のある、いかなる製品若しくは回路の適用又は使用から生じる一切の責任を負わない、本書面で提供されたあらゆる情報(あらゆるサンブルデザイン情報又はプログラムコードを含む)は、参照目的のためのみに提供されたものである。この情報で構成するあらゆるアプリケーション及びその結果としてのあらゆる製品の機能性及び安全性を適切に設計、プログラム、ハウテストすることは、本書面のユーザーの責任において行われるものとする。Cypress 製品は、兵器、兵器システム、原子力施設、生命維持装置若しくは生命維持ンステム、蘇生用の設備及び外科的移植を含むその他の医療機器若しくは医療システム、汚染管理若しくは有害物質管理の運用のために設計され若しくは意図されたシステムの重要な構成部分としての使用、又は装置若しくはシステムの不具合が人身傷害、死亡若しくは物的損害を生じさせるようなその他の使用(以下「本目的外使用」という。)のためには設計、意図又は承認されていない。重要な構成部分とは、それの不具合が装置若しくはシステムの不具合を生じさせるか又はその安全性若しくは実効性に影響すると合理的に予想できるような装置若しくはシステムのあらゆる構成部分をいう。Cypress 製品のあらゆる本目的外使用から生じ、若しくは本目的外使用に関連するいかなる請求、損害又はその他の責任についても、Cypress はその全部又は一部をとわず一切の責任を負わず、かつ Cypress はそれら一切から本書により免除される。Cypress は Cypress 製品の本目的外使用から生じ、大り免除される。Cypress 以のでは死亡に基づく請求を含む)から免責補償される。

Cypress, Cypress のロゴ, Spansion, Spansion のロゴ及びこれらの組み合わせ, WICED, PSoC, CapsSense, EZ-USB, F-RAM, 及び Traveo は, 米国及びその他の国における Cypress の商標又は登録商標である。Cypress のより完全な商標のリストは, cypress.com を参照すること。その他の名称及びブランドは, それぞれの権利者の財産として権利主張がなされている可能性がある。

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

CY7C1061G30-10BVXI CY7C1061GE30-10BVXI CY7C1061G30-10ZXI CY7C1061GE30-10ZXI CY7C1061G30-10ZXI CY7C1061G30-10ZXI CY7C1061G30-10ZXI CY7C1061G30-10BV1XI CY7C1061G30-10BV1XI CY7C1061G18-15ZXIT CY7C1061GE-10ZXI CY7C1061GE-10ZXI CY7C1061GE-10ZXI CY7C1061GE-10ZXI CY7C1061G18-15ZXIT CY7C1061G30-10ZXIT CY7C1061G18-15ZXIT CY7C1061G18-15ZXIT CY7C1061G18-15ZXI CY7C1061G-10ZXI CY7C1061G18-15ZXI CY7C1061G-10ZXI CY7C1061G18-15ZXI CY7C1061G-10ZXI CY7C1061G18-15ZXI CY7C1061G-10ZXI CY7C1061G18-15ZXI CY7C1061G-10ZXI CY7C1061G-10ZXIT CY7C1061G18-15ZXIT CY7C1061G18-15ZXIT CY7C1061G30-10ZXIT CY7C1061G18-15ZXIT CY7C1061G30-10ZXIT CY7C1061G18-15ZXIT CY7C1061GE-10ZXIT CY7C1061GE-15ZXIT CY7C1061GE-10ZXIT CY7C1061GE-15ZXIT CY7